# Backtracking: A Problem Solving Approach for Programming (Choose-Unchoose pattern)

Backtracking is a powerful technique used in solving combinatorial problems like generating permutations, combinations, subsets, and solving constraint satisfaction problems such as the N-Queens problem, Sudoku, and more. In this post, we’ll break down the “choose-unchoose” paradigm of backtracking, provide a template code, and explain it with an example.

### What is Backtracking?

Backtracking is a depth-first search approach for solving problems incrementally, where we build a solution step by step and backtrack when we realize that a certain path doesn’t lead to a valid solution. The idea is to explore all possible configurations and prune the paths that do not satisfy the constraints.

The “choose-unchoose” paradigm is a common pattern used in backtracking algorithms. It consists of three steps:

1. Choose: Make a choice from the available options.
2. Recurse: Proceed with the choice and recursively solve the remaining problem.
3. Unchoose: Undo the choice (i.e., backtrack) and try another option.

This pattern ensures that all possible solutions are explored, and it backtracks when a dead end is reached.

### Template Code for Backtracking

Below is a template for a typical backtracking solution using the “choose-unchoose” paradigm:

``````
function backtrack(solution, choices) {
// Base case: If the solution is complete or meets the problem requirements
if (isSolution(solution)) {
// Process the complete solution
processSolution(solution);
return;
}

// Iterate through all possible choices
for (let i = 0; i < choices.length; i++) {
// Choose: Add the current choice to the solution
solution.push(choices[i]);

// Recurse: Continue building the solution
backtrack(solution, choices);

// Unchoose: Remove the current choice to explore the next option
solution.pop();
}
}
``````
``````
// Helper function to check if a solution is valid (problem-specific)
function isSolution(solution) {
// Define criteria for a valid solution
return true; // Placeholder
}

// Helper function to process a complete solution (problem-specific)
function processSolution(solution) {
console.log(solution);
}
``````

### Example: Generating All Subsets of a Set

Let’s apply this template to a concrete problem: generating all possible subsets of a given set of numbers. This problem is a classic example of backtracking because we explore all possible subsets (combinations of elements) by either including or excluding each element.

#### Problem Statement

Given a set of distinct integers, generate all possible subsets (the power set).

Example: Input: `[1, 2, 3]`

Output:
`[[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]]`

#### Backtracking Approach with Choose-Unchoose

``````function subsets(nums) {
const result = []; // To store all subsets

function backtrack(start, currentSubset) {
// Add the current subset to the result (it's a valid subset)
result.push([...currentSubset]);

// Explore further choices
for (let i = start; i < nums.length; i++) {
// Choose: Include nums[i] in the current subset
currentSubset.push(nums[i]);

// Recurse: Move to the next element
backtrack(i + 1, currentSubset);

// Unchoose: Remove nums[i] from the current subset
currentSubset.pop();
}
}

return result;
}
``````
``````// Example usage:
const nums = [1, 2, 3];
console.log(subsets(nums));
// Output: [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]]
``````

#### Explanation

`#mermaid-svg-FT6bdZApjSFjMtAC{font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#000000;}#mermaid-svg-FT6bdZApjSFjMtAC .error-icon{fill:#552222;}#mermaid-svg-FT6bdZApjSFjMtAC .error-text{fill:#552222;stroke:#552222;}#mermaid-svg-FT6bdZApjSFjMtAC .edge-thickness-normal{stroke-width:2px;}#mermaid-svg-FT6bdZApjSFjMtAC .edge-thickness-thick{stroke-width:3.5px;}#mermaid-svg-FT6bdZApjSFjMtAC .edge-pattern-solid{stroke-dasharray:0;}#mermaid-svg-FT6bdZApjSFjMtAC .edge-pattern-dashed{stroke-dasharray:3;}#mermaid-svg-FT6bdZApjSFjMtAC .edge-pattern-dotted{stroke-dasharray:2;}#mermaid-svg-FT6bdZApjSFjMtAC .marker{fill:#666;stroke:#666;}#mermaid-svg-FT6bdZApjSFjMtAC .marker.cross{stroke:#666;}#mermaid-svg-FT6bdZApjSFjMtAC svg{font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;}#mermaid-svg-FT6bdZApjSFjMtAC .label{font-family:"trebuchet ms",verdana,arial,sans-serif;color:#000000;}#mermaid-svg-FT6bdZApjSFjMtAC .cluster-label text{fill:#333;}#mermaid-svg-FT6bdZApjSFjMtAC .cluster-label span{color:#333;}#mermaid-svg-FT6bdZApjSFjMtAC .label text,#mermaid-svg-FT6bdZApjSFjMtAC span{fill:#000000;color:#000000;}#mermaid-svg-FT6bdZApjSFjMtAC .node rect,#mermaid-svg-FT6bdZApjSFjMtAC .node circle,#mermaid-svg-FT6bdZApjSFjMtAC .node ellipse,#mermaid-svg-FT6bdZApjSFjMtAC .node polygon,#mermaid-svg-FT6bdZApjSFjMtAC .node path{fill:#eee;stroke:#999;stroke-width:1px;}#mermaid-svg-FT6bdZApjSFjMtAC .node .label{text-align:center;}#mermaid-svg-FT6bdZApjSFjMtAC .node.clickable{cursor:pointer;}#mermaid-svg-FT6bdZApjSFjMtAC .arrowheadPath{fill:#333333;}#mermaid-svg-FT6bdZApjSFjMtAC .edgePath .path{stroke:#666;stroke-width:1.5px;}#mermaid-svg-FT6bdZApjSFjMtAC .flowchart-link{stroke:#666;fill:none;}#mermaid-svg-FT6bdZApjSFjMtAC .edgeLabel{background-color:white;text-align:center;}#mermaid-svg-FT6bdZApjSFjMtAC .edgeLabel rect{opacity:0.5;background-color:white;fill:white;}#mermaid-svg-FT6bdZApjSFjMtAC .cluster rect{fill:hsl(210,66.6666666667%,95%);stroke:#26a;stroke-width:1px;}#mermaid-svg-FT6bdZApjSFjMtAC .cluster text{fill:#333;}#mermaid-svg-FT6bdZApjSFjMtAC .cluster span{color:#333;}#mermaid-svg-FT6bdZApjSFjMtAC div.mermaidTooltip{position:absolute;text-align:center;max-width:200px;padding:2px;font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:12px;background:hsl(-160,0%,93.3333333333%);border:1px solid #26a;border-radius:2px;pointer-events:none;z-index:100;}#mermaid-svg-FT6bdZApjSFjMtAC:root{--mermaid-font-family:"trebuchet ms",verdana,arial,sans-serif;}#mermaid-svg-FT6bdZApjSFjMtAC flowchart{fill:apa;}Start:Include 1: 1Exclude 1:Include 2: 1,2Exclude 2: 1Include 2: 2Exclude 2:Include 3: 1,2,3Exclude 3: 1,2Include 3: 1,3Exclude 3: 1Include 3: 2,3Exclude 3: 2Include 3: 3Exclude 3:`
1. Initialization:

• We initialize an empty array `result` to store all the subsets.
2. Recursive Backtracking Function (`backtrack`):

• The `backtrack` function takes two parameters:
• `start`: The index to start from for the current recursive call.
• `currentSubset`: The current subset being formed.
3. Base Case:

• There isn’t a strict base case in this example because every subset (including the empty set) is a valid result. We add the `currentSubset` to `result` every time the function is called.
4. Choose-Unchoose Steps:

• Choose: Include the element `nums[i]` in the `currentSubset`.
• Recurse: Call `backtrack(i + 1, currentSubset)` to proceed with the next elements.
• Unchoose: Remove the element `nums[i]` from `currentSubset` to explore other possibilities without it.

### Key Takeaways

• Backtracking explores all possible configurations by making choices, recursing with those choices, and undoing them to try new paths.
• The “choose-unchoose” pattern ensures that we explore all potential solutions and backtrack when a path doesn’t lead to a valid solution.
• This pattern is versatile and can be adapted to various combinatorial problems, from generating subsets and permutations to solving more complex problems like the N-Queens problem.

### Conclusion

Backtracking with the “choose-unchoose” pattern provides a structured approach to solving combinatorial problems. The template and example discussed in this post should give you a solid foundation to tackle similar problems. Try applying this approach to problems like generating permutations, solving Sudoku, or finding paths in a maze. Happy coding!

No Comment